使用CAT进行VBM分析

Alex / 2017-11-25 / free_learner@163.com / AlexBrain.cn

更新于2023-06-21,主要是文字排版上的更新,内容基本保持不变。

CAT(Computational Anatomy Toolbox)是一个基于SPM的Matlab工具包,这里记录一下使用 CAT进行VBM分析的方法。更详细的介绍参见CAT官网。

2023-06-21更新

我忘了记录当时使用的CAT版本,大概是12.5-12.6的版本。CAT版本更新特别快,所以新版本的 操作可能会稍有变化,但大致步骤应该没有变化。

一、安装和启动

- 1. 下载和安装SPM12,具体过程见SPM12官网;
- 2. 下载并解压CAT工具包,解压后名为cat12,放到SPM的toolbox文件夹下;
- 3. 打开SPM(在Matlab命令行窗口输入 spm fmri),在Menu窗口界面中toolbox选项中选择 cat12.

SPM for functional MRI				
Di spl ay	Check Reg	Render 🕶	FMRI 🗸	
Tool box: 👻	PPI s	I mCal c	DICOM Import	
Hel p	Utils ▼	Batch	Quit	

二、准备数据

- 1. 将所有被试的原始T1图像放到一个文件夹下,该文件夹即为分析目录,分析的结果都保存在 该目录下;
- 2. 这里假设有两组被试,第一组10人,命名为 №*.nii (* 表示001,002,003...010);第二 组10人,命名为 s*.nii (* 表示001,002,003...010).

三、分割图像

1. 选择Preprocessing模块下的Segment Data, 弹出Batch Editor窗口, 在这里设置图像分割的参数;

2. 选择Volumes,选择Specify,在弹出的窗口中选择所有被试的T1图像,选择Done;

8 🔵	🖹 Ba	itch E	ditor	ī		
<u>F</u> ile	<u>E</u> dit	⊻iew	<u>S</u> PM	<u>B</u> asic	210	
D 🚔						
Modu	le Lis	st			Current Module: CAT12: Segmentation	_
CATI	le Lis	rt egmen	tatio		Current Mochule: CAT12: Segmentation Help on: CAT12: Segmentation Volumes Split job into separate processes Options for initial SPML2 preprocessing . Tissue Probability Map . Affine Regularisation . Strength of SPM Inhomogeneity Correction Extended options for CAT12 preprocessing . Affine Preprocessing (APP) . Strength of Local Adaptive Segmentation . Strength of Skull-Stripping . Strength of Final Clean Up . Spatial Registration . Dartel Template . Shooting Template Current Item: Volumes	
						•
•	3333		•	-	Specify	

3. 选择Split job into separate processes,选择Specify,在弹出的窗口中设置进程数(默认应 该为电脑的CPU核心数,我这里是4),每个进程需要大概2GB内存; 4. 其余选项可保持不变,选择Batch Editor上方的绿色三角形,图像分割开始运行;

😣 🖨 🗉 🛛 Batch Editor	
<u>F</u> ile <u>E</u> dit <u>Y</u> iew <u>S</u> PM <u>B</u> asic	IO
Module List	Current Module: CAT12: Seg
CAT12: Segmentatic	. Strength of Local Ada . Strength of Skull-Stu . Strength of Final Cle . Spatial Registration

5. 分析结束后,分析目录下(即存放原始T1结构像的目录)会新增三个文件夹,其中文件夹mri 包括每个被试的灰质(命名为 mwp1*.nii,*即每个被试的文件名,这里为N001,N002,... N010,S001,S002,...S010,1表示灰质)、每个被试的白质(命名为 mwp2*.nii,* 同 样表示每个被试的文件名,2表示白质)以及每个被试降噪和去除颅骨后的图像(命名为 mw*.nii,m表示校正过配准,w表示标准空间);文件夹report中保存了每个被试形态学和 图形质量等指标,包括pdf/mat/xml三种格式;文件夹label包含了每个被试不同分区模板下的 各分区的体积信息,包括mat/xml两种格式。

四、检查图像质量

1. 选择Check Data Quality模块下的Display One Slice For All Images;

Check	Data Quality	
	Display One Slice For All Images	Check Sample Homogeneity 👻

- 2. 在弹出的Batch Editor中选择Sample data,选择Specify,选择分析目录下mri文件夹中 wm*.nii 文件;
- 3. 选择Proportional scaling,选择Yes;

D 📽 🖬 🕨		
Module List	Current Module: Display one slice for all image	S
Display one slice 🔺	Help on: Display one slice for all images	
	Sample data	20 files
	Proportional scaling?	Yes
	Spatial orientation	axial
	Selected slice (in mm)?	0

4. 其他选择保持不变, 选择Batch Editor上方的绿色三角形,开始运行;

- 5. 选择Check Data Qualtiy模块下Check Sample Homogeneity,选择VBM Data;
- 6. 在弹出的Batch Editor中选择Data,选择Sample data,选择Specify,选择分析目录下mri文件 夹下 mwp1*.nii 文件,即每个被试的灰质图像;
- 7. 其他选项保持不变,选择选择Batch Editor上方的绿色三角形,开始运行;
- 8. 运行结束,会生成一个相关矩阵图和一个相关系数的boxplot,表达的信息都是不同被试间的相似性。比如下图中有一个被试明显不同于其他被试的图像,经过仔细检查后发现,确实该被试在图像质量上有问题,所以这一检查步骤是很重要的。

五、平滑

1. 在SPM Menu窗口中选择Smooth,在弹出的Batch Editor中选择Images to Smooth,选择 Specify,选择分析目录下mri文件夹下 mwp1*.nii 文件;

😵 🗇 💷 SPM12 (6906): Menu			
Spatial pre-processing			
Realign (• Slice timing	Smooth		
Coregiste • Normalise •	Segment		

2. 其他选项保持不变,选择选择Batch Editor上方的绿色三角形,开始运行;

3. 运行结束后,分析目录下mri文件内新增了名为 smwp1*.nii 的文件,表示平滑后的每个被试的灰质图像;

六、估计颅内总体积

1. 选择Statistical Analysis模块下的Estimate TIV,在弹出的Batch Editor中选择XMLfiles,选择 Specify,选择分析目录下report文件夹下每个被试的xml格式文件;

Statistical Analysis				
	Basic Models	Treshold-Free Cluster Enhancemen 👻		
	Estimate Surface Models	Estimate TIV		

- 2. 选择Output file,选择Specify,设置输出的路径和文件名(默认路径为当前目录和默认文件 名为TIV.txt);
- 3. 其他选项保持不变,选择选择Batch Editor上方的绿色三角形,开始运行;

七、构建统计模型

- 1. 选择Statistical Analysis模块下的Basic Models,在弹出的Batch Editor里选择Directory,即 输出目录(这里我在分析目录下新建了一个stat的文件夹,并选择stat文件夹为输出目录);
- 选择Design,选择Two-sample t-test;选择Group 1 scans,选择mri目录下 swmp1N*.nii 文件,即第一组被试;选择Group 2 scans,选择mri目录下 swmp1S*.nii 文件,即第二组被试;注意要去除在前面质量检查步骤中有问题的被试;

Help on: Factorial design specification DirectoryM/CAT/stat	•
Design	
. Two-sample t-test . Group 1 scans <-X . Group 2 scans <-X . Independence Yes . Variance Unequal . Grand mean scaling No . ANCOVA No Covariates Multiple covariates	3000
Masking . Threshold masking . None . Implicit Mask Yes . Explicit Mask	-
Current I tem: Design	
One-sample t-test	
*Two-sample t-test	333
Paired t-test Multiple regression One-way ANOVA	3000
Une-way ANUVA - within subject	-

3. 选择Covariates,选择New Covariate,选择Vector,选择Specify,输入 spm_load ,选择前面生成的包含颅内总体积的文本文件(默认为TIV.txt);如果去除了某个被试,也要相应地将其颅内体积去掉;

😣 🖨 Vector	
Enter a value.	
To clear a value, clear the input field and accept.	
Leave input box with CIRL-TAB to access buttons.	
spm_load	•
	OK Cancel

- 4. 选择Threshold masking,选择Absolute,设置为0.1;
- 5. 其他选项保持不变,选择选择Batch Editor上方的绿色三角形,开始运行;
- 6. 分析结束后会在输出目录下(这里为stat)产生一个SPM.mat文件。

八、模型估计和统计推断

1. 在SPM Menu窗口选择Estimate,在Batch Editor中选择Select SPM.mat,Specify上一步生成的SPM.mat文件,其他选项保持不变,并运行Batch。

Nodel specification, review and e	stimation
Specify 1st-level	Review
Specify 2nd-level	Estimate

2. 在SPM Menu窗口选择Review,选择SPM.mat;在交互窗口中选择Design,选择Design orthogonality;

 在SPM Menu窗口选择Results,选择SPM.mat;在弹出的contrast manager中选择tcontrasts,选择Define new contrast,设置contrast name和constrast(双样本t检验就是1 -1);

define contrast		
IIdille	N > S	
type -	• t-contrast	OF-contrast
contrast veights vector	1 -1	
		submit

4. 在弹出的交互窗口中apply masking,选择none; p value adjustment选择FWE; p value (FWE)选择0.05(默认为0.05), extent threshold选择0(默认为0)。

2023-06-21更新

注意这里的FWE校正是voxel-level的校正,根据我所了解的文献证据,这种方法会过于严格。采 用cluster-level的校正或者基于TFCE的方法会更合理。

5. 组间比较结果:

