

Alex / 2018-12-15 / free_learner@163.com / AlexBrain.cn

更新于2023-07-24,主要是文字排版上的更新,内容基本保持不变。

总结如何使用CAT进行基于皮层的形态学分析(Surface-Based Morphometry, SBM),包括估计 皮层指标(厚度、沟回指数、沟深、复杂度等)、平滑和重采样、统计分析和可视化。我在以前 的博客中记录了如何使用CAT进行基于体素的形态学分析(Volume-Based Morphometry, VBM),现在只说明进行SBM分析的不同之处。这里测试的CAT版本是12.5 (r1363),参考资料 为CAT的使用手册。

一、估计皮层和皮层厚度

在CAT12的"Segment"中"Writing optons"下将"Surface and thickness estimation"选项设置为 "Yes",其他保持不变即可。运行完毕后,会生成估计得到的皮层(命名为 lh/rh.central.*.gii)以及皮层厚度文件(命名为 lh/rh.thickness.*)。

-					Batch Editor	_ 0
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>S</u> PM	<u>B</u> asiclO		
D	🛩 日					
	Module I	ist			Current Module: CAT12: Segmentation	
	CAT12	: Segm	entati	ion<-▲	Spatial registration Voxel size for normalized images Internal resampling for preprocessing Writing options Surface and thickness estimation ROI analysis Atlases	Dartel 1.5 Fixed 1.0 mm
					neuromorphometrics lpba40 cobra hammers . Grey matter	Yes No No
					. Mative space . Modulated normalized . DARTEL export . White matter	Yes No
					Current Item: Surface and thickness estimation	
					*No Yes	▲ ▼

二、平滑和重采样

上一步估计得到的皮层厚度只是个体空间的,为了进行统计分析,需要将个体空间的皮层厚度重 采样到一个标准空间。平滑是为了补偿配准的误差以及个体之间形态上的变异。具体地,

- 1. 打开CAT的"Resample & Smooth Surfaces"模块;
- 2. 在"(Left) Surface Data"选项中选择所有的左半球皮层厚度文件(命名为 lh.thickness.*);
- 3. 在"Resample Size"选项中选择重采样到的空间,默认为32k mesh (HCP)。另一个选择是 164k mesh (Freesurfer),这个选项会增加不少运行时间;
- 4. 在"Smoothing Filter Size in FWHM"选项中设置平滑核大小,默认为15mm;
- 5. 在"Split job into separate processes"选项中设置并行进程数。该参数取决于电脑的性能,设置过多的进程数,可能会使电脑卡死;
- 6. 运行结束后,会生成重采样到标准空间并且平滑后的皮层厚度文件(命名为 s15.mesh.thickness.resampled_32k.*.gii)。

Surface Tools	
Extract & Map Surface Data 🔻	Resample & Smooth Surfaces
Surface Calculator 👻	Display Surfaces

-					Batch Editor	_ C
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>S</u> PM	<u>B</u> asiclO		
D	2 🔒					
N	lodule L	.ist			Current Module: Resample and Smooth Surfac	ce Data
F	lesamp	ole and	l Smo	oth Si 📥	Help on: Resample and Smooth Surfa	ce Data 🔺
					(Left) Surfaces Data	<-X
					Merge hemispheres	Yes – merge hemispheres
					Resample Size	32k mesh (HCP)
					Smoothing Filter Size in FWHM	15
					Split job into separate processes	12
						•

三、统计分析

在CAT的"Basic Models"下构建统计模型,如同VBM分析。不同之处在于需要使用"Estimate Surface Models"来估计模型,而不是使用SPM中的"Estimate"模块。仍然通过SPM中的"Results" 查看结果。

四、可视化

将统计分析的T/F值进行对数转换和设置阈值

- 1. 在"Transform SPM-maps"选项下选择"spmT surfaces (或spmF surfaces)";
- 2. 在"Data"选择统计分析得到的T/F值文件;
- 3. 在"Convert t value to"选项中选择-log(p);
- 4. 在"Threshold type peak-level"选项下选择FWE, "Threshold"设置为0.05;
- 5. 其他保持不变即可;
- 6. 生成命名为 logP*.gii 的文件,这就是通过阈值并且进行了对数转换后的p值图像。为什么 要进行对数转换呢?进行对数转换后,2/3/4分别对应于p=0.01/0.001/0.0001,这样用颜色表 示更均匀一些。

Dat	a Presentation				
	Transform SPM-maps 👻		Display Results	-	
L I		1			

<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>S</u>	PM <u>B</u> asi	clO		
D 🛩 🖬					
Module Lis	it			Current Module: Threshold and transform spmT surfaces	
Thresho	ld and t	ransforr	r 🗕	Help on: Threshold and transform spmT surfaces	•
				Data	<-X
				Conversion	
				. Convert t value to	-log(p)
				. Inreshold type peak-level	
				Threshold	0.05
				. Show also inverse effects (e.g. neg. values)	No
				. Cluster extent threshold	
				None	

进行可视化

- 1. 在"Display Results"选项下选择"Display Surface Results";
- 2. 选择上一步生成的logP*.gii文件;
- 3. 在"Surface"选择皮层文件,默认是Central;
- 4. 在"Colormap"下选择不同的配色方案;
- 5. 在"Atlas Labelling"下可以报告显著结果所在的脑区位置;
- 6. 在"Overlay min/max"下可以设置阈值;
- 7. 在"Save"下可以保存图片;
- 8. 其他选项也可以试试。

-Data Presentation	
Transform SPM-maps 👻	Display Results 👻

Select Sur	face Data
Surface 👻	View 👻
Texture 👻	Threshold 👻
Colormap 👻	Atlas Labeling 👻
Data Cursor 🔻	Atlas Border Overlay 👻
Show filename	✓ White background
Hide colorbar	Disable transparency
Invert colormap	Hide neg. results
Overlay min -12 3 12	Overlay max -12 5 12
Save	Close

五、分析其他皮层参数

除了皮层厚度,还可以分析其他皮层指标。

- 1. 在"Extract & Map Surface Data"下选择"Extract Additional Surface Parameters";
- 2. 在"Central Surfaces"下选择前面生成的左半球皮层文件(命名为 lh.central.*.gii);
- 3. 在"Gyrification index"下选择Yes,估计沟回指数;
- 4. 在"Cortical complexity"下选择Yes,估计复杂度;
- 5. 在"Sulcus depth"下选择Yes,估计沟深;
- 6. 生成的文件分别命名为 lh/rh.gyrification.*, lh/rh.fractaldimension.* 和 lh/rh.sqrtsulc.*;
- 7. 同分析皮层厚度一样,将上一步得到的皮层指标进行重采样、平滑、统计分析以及可视化的 步骤即可。

D 🚅 🖬 🕨		
Module List	Current Module: Extract additional surface parameters	
Extract additional surface	Help on: Extract additional surface parameters	▲
	Central Surfaces	<-X
	Gyrification index	Yes
	Cortical complexity (fractal dimension)	No
	Sulcus depth	Yes
	Split job into separate processes	12
		•